A pattern classification approach to dynamical object detection
- 1 January 1999
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- Vol. 11, 1223-1228 vol.2
- https://doi.org/10.1109/iccv.1999.790420
Abstract
Current systems for object detection in video sequences rely on explicit dynamical models like Kalman filters or hidden Markov models. There is significant overhead needed in the development of such systems as well as the a priori assumption that the object dynamics can be described with such a dynamical model. This paper describes a new pattern classification technique for object detection in video sequences that uses a rich, overcomplete dictionary of wavelet features to describe an object class. Unlike previous work where a small subset of features was selected from the dictionary, this system does no feature selection and learns the model in the full 1,326 dimensional feature space. Comparisons using different sized sets of several types of features are given. We extend this representation into the time domain without assuming any explicit model of dynamics. This data driven approach produces a model of the physical structure and short-time dynamical characteristics of people from a training set of examples; no assumptions are made about the motion of people, just that short sequences characterize their dynamics sufficiently for the purposes of detection. One of the main benefits of this approach is that transient false positives are reduced. This technique compares favorably with the static detection approach and could be applied to other object classes. We also present a real-time version of one of our static people detection systems.Keywords
This publication has 16 references indexed in Scilit:
- Incremental recognition of pedestrians from image sequencesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- A general framework for object detectionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking peoplePublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Training support vector machines: an application to face detectionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Pedestrian detection using wavelet templatesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Autonomous driving goes downtownIEEE Intelligent Systems and their Applications, 1998
- A Tutorial on Support Vector Machines for Pattern RecognitionData Mining and Knowledge Discovery, 1998
- Non-intrusive person authentication for access control by visual tracking and face recognitionPublished by Springer Nature ,1997
- A theory for multiresolution signal decomposition: the wavelet representationPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1989
- Human body motion segmentation in a complex scenePattern Recognition, 1986