Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero
- 1 January 1994
- journal article
- research article
- Published by Cambridge University Press (CUP) in Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- Vol. 124 (6) , 1165-1176
- https://doi.org/10.1017/s0308210500030171
Abstract
We study the existence of changing sign solutions of an elliptic semilinear boundary value problem, which arises as a limiting equation of the two species Lotka–Volterra competing equations system. Using variational methods and a result of D'Aujourd'hui, we find conditions which are both sufficient and necessary for this existence problem.Keywords
This publication has 16 references indexed in Scilit:
- On the Existence and Uniqueness of Positive Solutions for Competing Species Models with DiffusionTransactions of the American Mathematical Society, 1991
- On the existence and uniqueness of positive solutions for competing species models with diffusionTransactions of the American Mathematical Society, 1991
- Degenerate critical points, homotopy indices and Morse inequalities.Journal für die reine und angewandte Mathematik (Crelles Journal), 1984
- A note on the topological degree at a critical point of mountainpass-typeProceedings of the American Mathematical Society, 1984
- On the indices of fixed points of mappings in cones and applicationsJournal of Mathematical Analysis and Applications, 1983
- On the number of solutions of a nonlinear Dirichlet problemJournal of Mathematical Analysis and Applications, 1981
- On the existence of solutions of certain asymptotically homogeneous problemsMathematische Zeitschrift, 1981
- Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infiniAnnales de la Faculté des sciences de Toulouse : Mathématiques, 1981
- Generic properties of nonlinear boundary value problemsCommunications in Partial Differential Equations, 1979
- Positive Solutions of Operator Equations.The American Mathematical Monthly, 1967