The stability, in solutions of low ionic strength, of aminoacyl-tRNA synthetases from the extremely halophilic bacterium Halobacterium cutirubrum was studied as a preliminary to their fractionation. The enzymes differed considerably in their sensitivity to such solutions. Conditions were found where reactivation from the salt-free and inactive state could be achieved. Removal of both K+ and Mg2+ together generally resulted in better stability than the removal of K+ alone. A low temperature (4°) was also important for stability in buffers of low ionic strength. In some cases the L-amino acid substrates afforded protection against inactivation in the salt-free state. Gel filtration in low ionic strength medium was found to work well as a fractionation procedure; a partial purification of phenylalanyl-tRNA synthetase was effected in this way. The use of other conventional protein fractionation procedures is now possible.