Saturation and secondary Stokes effects in coherent anti-Stokes Raman spectroscopy

Abstract
Coupled differential equations are formulated to model the generation of coherent anti-Stokes Raman radiation in molecular gases. They include the basic coherent interaction of incident pump and idler (Stokes) waves to generate the anti-Stokes radiation plus other radiation and absorption processes which influence saturation due to population depletion of the lowest energy level. Other factors considered are simultaneous excitation of more than one vibration frequency, a quasi-monochromatic idler beam slightly off the true Stokes frequency, and the temporal laser pulse shape. Some effects of these various physical factors on saturation are presented graphically.