Solidification Theory for Concrete Creep. I: Formulation
- 1 August 1989
- journal article
- Published by American Society of Civil Engineers (ASCE) in Journal of Engineering Mechanics
- Vol. 115 (8) , 1691-1703
- https://doi.org/10.1061/(asce)0733-9399(1989)115:8(1691)
Abstract
The paper presents a new general constitutive law for creep in which the aging due to continuing hydration of cement is taken into account in a manner that is both simpler and physically better justified than in existing theories. Micromechanical analysis of the solidification process is used to show that the aging may be modeled as a growth of the volume fraction of load‐bearing solidified matter (hydrated cement), which itself is treated as nonaging and thus is describable as a nonaging viscoelastic material. The analysis shows that a history integral should be used to express the rate, rather than the total value, of the viscoelastic strain component. Material functions can be chosen in a way that yields previously established simple laws, i.e., the double power law, logarithmic law and log‐double power law, as special asymptotic cases. The creep strain is obtained as a sum of aging and nonaging viscoelastic strains and an aging viscous strain (flow). Nonlinearity is introduced by modifying the current...Keywords
This publication has 4 references indexed in Scilit:
- Conclusions for structural analysis and for formulation of standard design recommendationsMaterials and Structures, 1987
- Triple Power Law for Concrete CreepJournal of Engineering Mechanics, 1985
- Practical prediction of time-dependent deformations of concreteMaterials and Structures, 1978
- Theory of Creep and Shrinkage in Concrete Structures: A Précis of Recent DevelopmentsPublished by Elsevier ,1975