Automatic target recognition organized via jump-diffusion algorithms
- 1 January 1997
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Image Processing
- Vol. 6 (1) , 157-174
- https://doi.org/10.1109/83.552104
Abstract
Proposes a framework for simultaneous detection, tracking, and recognition of objects via data fused from multiple sensors. Complex dynamic scenes are represented via the concatenation of simple rigid templates. The variability of the infinity of pose is accommodated via the actions of matrix Lie groups extending the templates to individual instances. The variability of target number and target identity is accommodated via the representation of scenes as unions of templates of varying types, with the associated group transformations of varying dimension. We focus on recognition in the air-to-ground and ground-to-air scenarios. The remote sensing data is organized around both the coarse scale associated with detection as provided by tracking and range radars, along with the fine scale associated with pose and identity supported by high-resolution optical, forward looking infrared and delay-Doppler radar imagers. A Bayesian approach is adopted in which prior distributions on target scenarios are constructed via dynamical models of the targets of interest. These are combined with physics-based sensor models which define conditional likelihoods for the coarse/fine scale sensor data given the underlying scene. Inference via the Bayes posterior is organized around a random sampling algorithm based on jump-diffusion processes. New objects are detected and object identities are recognized through discrete jump moves through parameter space, the algorithm exploring scenes of varying complexity as it proceeds. Between jumps, the scale and rotation group transformations are generated via continuous diffusions in order to smoothly deform templates into individual instances of objects.Keywords
This publication has 24 references indexed in Scilit:
- Deformable templates using large deformation kinematicsIEEE Transactions on Image Processing, 1996
- Tracking the direction of arrival of multiple moving targetsIEEE Transactions on Signal Processing, 1994
- Image recovery from data acquired with a charge-coupled-device cameraJournal of the Optical Society of America A, 1993
- Structural Image Restoration through Deformable TemplatesJournal of the American Statistical Association, 1991
- An efficient algorithm for tracking the angles of arrival of moving targetsIEEE Transactions on Signal Processing, 1991
- Knowledge-based target recognition system evolutionOptical Engineering, 1991
- Multiple target angle tracking using sensor array outputsIEEE Transactions on Aerospace and Electronic Systems, 1990
- Stochastic Complexity and ModelingThe Annals of Statistics, 1986
- A Universal Prior for Integers and Estimation by Minimum Description LengthThe Annals of Statistics, 1983
- Estimating the Dimension of a ModelThe Annals of Statistics, 1978