Calibration of the CH and CN Variations Among Main Sequence Stars in M71 and in M13

Abstract
An analysis of the CN and CH band strengths measured in a large sample of M71 and M13 main sequence stars by Cohen (1999a,b) is undertaken using synthetic spectra to quantify the underlying C and N abundances. In the case of M71 it is found that the observed CN and CH band strengths are best matched by the {\it{identical}} C/N/O abundances which fit the bright giants, implying: 1) little if any mixing is taking place during red giant branch ascent in M71, and 2) a substantial component of the C and N abundance inhomogeneities is in place before the main sequence turn-off. The unlikelihood of mixing while on the main sequence requires an explanation for the abundance variations which lies outside the present stars (primordial inhomogeneities or intra-cluster self enrichment). For M13 it is shown that the 3883\AA CN bands are too weak to be measured in the spectra for any reasonable set of expected compositions. A similar situation exists for CH as well. However, two of the more luminous program stars do appear to have C abundances considerably greater than those found among the bright giants thereby suggesting deep mixing has taken place on the M13 red giant branch.

This publication has 0 references indexed in Scilit: