Abstract
The turbulent flux of sensible heat in the energy balance of a glacier surface is assumed to be proportional to the temperature difference between the glacier surface and the atmosphere at the same level but outside the thermal influence of the glacier. The factor of proportionality between them is first explained in terms of friction velocity, roughness height, and stability function of the logarithmic wind and temperature profile. It is then derived from climatological records and measurements of the energy balance and its altitudinal gradients at Hintereisferner. Examples of the energy-balance components and their change with altitude are given for the entire ablation season as well as for short periods. The heat transfer coefficients derived have a mean value of 1.7±0.2 MJ m−2d−1K−1(40 ± 5 ly d−1K−1).

This publication has 14 references indexed in Scilit: