Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes

Abstract
The effects of truncated cone air holes on propagation losses from line defectwaveguides in two-dimensional (2D) photonic crystal(PC) slabs are investigated. It is shown that coupling between TE-like waveguide modes and TM-like slab modes due to out-of-plane structural asymmetries can result in large propagation losses. It is also shown that coupling, and therefore propagation loss, does not occur in a frequency range where wave vectors of TE-like waveguide modes do not match projections of those of TM-like slab modes. The results are thought to be applicable to other structures exhibiting out-of-plane asymmetries, such as 2D PC slabs attached to silicon on insulator substrates.