Abstract
Components of Killing’s equation are used to obtain constraints satisfied in a spacelike hypersurface by the intrinsic metric and extrinsic curvature in the presence of a spacetime conformal motion for a solution of Einstein’s equations. If the conformal motion is either a homothetic motion or a motion, it is shown that these Killing constraints are preserved by the Einstein evolution equations. It is then shown that the generator of the homothetic motion (homothetic Killing vector) can be constructed if the Killing constraints are satisfied by a set of initial data. It is shown that a homothetic motion in the intrinsic metric is a spacetime homothetic motion if the extrinsic curvature is transformed correctly under the spatial homothetic motion. Further restrictions on a proper conformal motion due to the fact that it is not identically a curvature collineation are obtained. Restrictions on the matter–stress–energy tensor are discussed. Examples are presented.