Colloquium: Aligning molecules with strong laser pulses

Abstract
We review the theoretical and experimental status of intense laser alignment—a field at the interface between intense laser physics and chemical dynamics with potential applications ranging from high harmonic generation and nanoscale processing to stereodynamics and control of chemical reactions. After placing the intense laser approach in context with other alignment techniques, we proceed with a discussion of the physics underlying this technique and a description of methods of observing it in the laboratory. The roles played by the laser frequency, the pulse duration, and the system temperature are illustrated numerically and experimentally. Alignment is extended to three-dimensional orientational control, a method of hindering the rotation about all three axes of polyatomic molecules. We conclude with a discussion of potential applications of intense laser alignment.