Low abundance of Escherichia coli microsatellites is associated with an extremely low mutation rate

Abstract
It is widely assumed that microsatellites are generated by replication slippage, a mutation process specific to repetitive DNA. Consistent with their high mutation rate, microsatellites are highly abundant in most eukaryotic genomes. In Escherichia coli, however, microsatellites are rare and short despite the fact that a high microsatellite mutation rate was described. We show that this high microsatellite instability depends on the presence of the F-plasmid. E. coli cells lacking the F-plasmid have extremely low microsatellite mutation rates. This result provides a possible explanation for the genome-wide low density of microsatellites in E. coli. Furthermore, we show that the F-plasmid induced microsatellite instability is independent of the mismatch repair pathway.