Estimation of the Transmission Risk of 2019-nCov and Its Implication for Public Health Interventions

Abstract
Background: Since the emergence of the first pneumonia cases in Wuhan, China, the novel coronavirus (2019-nCov) infection has been quickly spreading out to other provinces and neighbouring countries. Estimation of the basic reproduction number by means of mathematical modelling can be helpful for determining the potential and severity of an outbreak, and providing critical information for identifying the type of disease interventions and intensity. Methods: A deterministic compartmental model was devised based on the clinical progression of the disease, epidemiological status of the individuals, and the intervention measures. Findings: The estimation results based on likelihood and model analysis reveal that the control reproduction number may be as high as 6.47 (95% CI 5.71-7.23). Sensitivity analyses reveal that interventions, such as intensive contact tracing followed by quarantine and isolation, can effectively reduce the control reproduction number and transmission risk, with the effect of travel restriction of Wuhan on 2019-nCov infection in Beijing being almost equivalent to increasing quarantine by 100-thousand baseline value. Interpretation: It is essential to assess how the expensive, resource-intensive measures implemented by the Chinese authorities can contribute to the prevention and control of the 2019-nCov infection, and how long should be maintained. Under the most restrictive measures, the outbreak is expected to peak within two weeks (since January 23rd 2020) with significant low peak value. With travel restriction (no imported exposed individuals to Beijing), the number of infected individuals in 7 days will decrease by 91.14% in Beijing, compared with the scenario of no travel restriction.

This publication has 0 references indexed in Scilit: