Abstract
Theorem 1. Let the countable abelian group act nonsingularly and aperiodically on Lebesgue space . Then for each finite subset <!-- MATH $A \subset G$ --> and <!-- MATH $\varepsilon > 0\exists$ --> 0\exists $"> finite <!-- MATH $B \subset G$ --> and <!-- MATH $F \subset X$ --> with <!-- MATH $\{ bF:b \in B\}$ --> disjoint and <!-- MATH $\mu [({ \cap _{a \in A}}B - a)F] > 1 - \varepsilon$ --> 1 - \varepsilon $">.

This publication has 6 references indexed in Scilit: