Abstract
Numerous problems in numerical analysis, including matrix inversion, eigenvalue calculations and polynomial zerofinding, share the following property: The difficulty of solving a given problem is large when the distance from that problem to the nearest "ill-posed" one is small. For example, the closer a matrix is to the set of non-invertible matrices, the larger its condition number with respect to inversion. We show that the sets of ill-posed problems for matrix inversion, eigenproblems, and polynomial zerofinding all have a common algebraic and geometric structure which lets us compute the probability distribution of the distance from a "random" problem to the set. From this probability distribution we derive, for example, the distribution of the condition number of a random matrix. We examine the relevance of this theory to the analysis and construction of numerical algorithms destined to be run in finite precision arithmetic.

This publication has 20 references indexed in Scilit: