Abstract
The genes encoding the β subunit of ATP synthase and the large subunit of ribulose 1,5-bisphosphate carboxylase are located on opposite strands of the maize chloroplast genome. Their transcription start sites are separated by a 159 bp sequence that includes the promoters for both genes. The effects of deleting or modifying one of the two promoters on transcription from the adjacent, unaltered promoter were assessed in vitro using maize chloroplast extracts to transcribe cloned maize DNA templates. When the atpB promoter was disrupted by an 8 bp insertion, rbcL transcription was not altered. When the rbcL promoter was disrupted by a 2 bp insertion, atpB transcription decreased, whereas when the rbcL promoter region was deleted, atpB transcription increased. Activity of the atpB promoter was also reduced when the +2 bp-rbcL promoter template was transcribed in vitro by Escherichia coli RNA polymerase. The changes in atpB transcriptional efficiency were only seen when the atpB and rbcL promoters were closely spaced on the same template molecule. These results established that the atpB and rbcL promoters interact in vitro in a cis and spacing dependent manner. The interaction may have physiological relevance in vivo.