Abstract
We report the measurement of the absolute d36 nonlinear coefficient of silver gallium sulfide (AgGaS2) from three phase-matched nonlinear interactions spanning from 10.2 to 0.78 µm: the sum-frequency of a CO2 laser (10.2 µm) and a near-IR AlGaAs diode laser (0.842 µm), the second-harmonic generation of a KCl:Li color-center laser (2.53 µm), and the noncritically phase-matched 3ω-ω2ω difference frequency between the AlGaAs diode laser and the KCl:Li laser to generate 1.265 µm. From the theoretical evaluation of the Gaussian-beam aperture functions for these type I interactions with arbitrary focusing parameters, beam-waist locations, and absorption losses, we have deduced from the three processes the same consistent value d36=13(±2) pm/V for AgGaS2. Our value is independent of the growth origin of the material. In light of the trustworthy value of d36 measured from our experiments we analyze the feasibility of a continuous-wave doubly resonant parametric oscillator-(DRO-)based 3:1 frequency divider pumped by a near-IR diode laser. The predicted pump power threshold for the ring-resonator DRO lies in the range of 70–140 mW for a 14–18-mm-long sample with an absorption loss near the level of 1% cm-1 at the output frequencies.
Keywords