A three-dimensional study of NeICl predissociation resonances by the complex scaled discrete variable representation method

Abstract
A study of the vibrational predissociation of the van der Waals complex NeICl on the B electronic surface, NeICl (B, v=2) to Ne+ICl (B, v=1, j), was conducted using the discrete variable representation (DVR) formulation of the complex coordinate method. The resonance positions, widths, and wave functions were inferred from the complex eigenvalues and eigenvectors of the complex scaled Hamiltonian matrix. Assignment of the various states was done by the natural expansion analysis. The natural expansion analysis provides a rigorous criterion as to the separability of the different modes in a given coordinate system, and allows for quantum number assignment to the vibrational, stretching, and bending modes of NeICl. The rotational distribution of the ICl fragment after dissociation was obtained by the asymptoticanalysis of the tail of the complex scaled square‐integrable resonancewave functions and was found to be in good agreement with theoretical results previously obtained for this system by Roncero et al. [J. Chem. Phys. 92, 3348 (1990)] and with experimental measurements by Skene, Drobits, and Lester [J. Chem. Phys. 85, 2329 (1986)].

This publication has 71 references indexed in Scilit: