A Simulation of Electron Scattering in Metals

Abstract
A Monte Carlo calculation model is developed to simulate trajectories of primary and ionized electrons in metals. It is constructed especially for a quantitative analysis of images in the scanning electron microscope. We perform a direct simulation considering each differential scattering cross section for elastic scattering, inner-shell electron ionization, conduction band electron ionization and bulk plasmon excitation. The spatial distribution of secondary electron emission calculated is narrower than that of backscattered electron emission at the Al surface for 1 keV primary electrons, but depending on the condition, this tendency may not always be found. The spatial distributions of both secondary and backscattered electrons show the size effect, and if the specimen to be observed is smaller, the practical resolution will be better in the scanning electron microscope.