Contrasting Changes in Phase I and Phase II Metabolism of Acetaminophen in Male Mice Pretreated with Carbon Tetrachloride
- 30 January 2006
- journal article
- Published by Wiley in Basic & Clinical Pharmacology & Toxicology
- Vol. 98 (2) , 225-230
- https://doi.org/10.1111/j.1742-7843.2006.pto_308.x
Abstract
Effect of carbon tetrachloride (CCl(4)) pretreatment on the biotransformation and elimination of acetaminophen were examined in male mice. A 24 hr initial dose of CCl(4) (0.05 ml/kg, intraperitioneally) reduced the induction of hepatotoxicity resulting from acetaminophen treatment (350 mg/kg, intraperitoneally) as determined by changes in serum alanine and aspartate aminotransferase, and sorbitol dehydrogenase activities. Acetaminophen and the major metabolites in plasma were monitored for 12 hr following acetaminophen treatment. CCl(4) pretreatment decreased the plasma concentrations of acetaminophen-cysteine and acetaminophen-mercapturate, but acetaminophen-glucuronide and acetaminophen-sulfate were increased significantly. The elimination of the parent drug from plasma was not affected by CCl(4). In urine collected for 24 hr, the concentrations of acetaminophen-sulfate and acetaminophen-glucuronide were increased by 84% and 33%, respectively, whilst acetaminophen-cysteine and acetaminophen-mercapturate were reduced to approximately one third of control. Expression of cytochrome P450 (CYP) isozymes was determined using antibodies of 2E1 and 1A2 as probes. CYP2E1 and 1A2 expressions were decreased significantly by CCl(4). Likewise, CCl(4) treatment reduced the microsomal p-nitrophenol hydroxylase and p-nitroanisole O-demethylase activities to less than one third of control. The results indicate that, although CCl(4) reduces the generation of thioether conjugates of acetaminophen by decreasing the CYP activities, inhibition of the oxidative metabolism of acetaminophen is counterbalanced by the enhancement of conjugate formation via the glucuronide and sulfate pathways, resulting in elimination of the drug at a rate equivalent to that in normal mice. It is suggested that liver injury in patients may not warrant a mandatory reduction of drug doses extensively inactivated via phase II reactions.Keywords
This publication has 23 references indexed in Scilit:
- Protection against Acetaminophen Toxicity in CYP1A2 and CYP2E1 Double-Null MiceToxicology and Applied Pharmacology, 1998
- Identification of the cytochrome P450 isoforms involved in theO-demethylation of 4-nitroanisole in human liver microsomesXenobiotica, 1997
- UDP glucuronosyltransferase in the cirrhotic rat liverJournal of Gastroenterology and Hepatology, 1996
- Release of latent glucuronosyltransferase activity contributes to the sparing of glucuronidation in experimental liver injuriesJournal of Gastroenterology and Hepatology, 1994
- Hepatic enzyme activity is the major factor determining elimination rate of high-clearance drugs in cirrhosisHepatology, 1993
- Hepatic enzyme activity is the major factor determining elimination rate of high-clearance drugs in cirrhosisHepatology, 1993
- Bioactivation of Halogenated Hydrocarbons by Cytochrome P4502E1Critical Reviews in Toxicology, 1993
- The differential effects of hepatotoxicants on the sulfation pathway in ratsToxicology and Applied Pharmacology, 1991
- Paracetamol metabolism following overdosage: application of high performance liquid chromatographyJournal of Pharmacy and Pharmacology, 1977
- UDP-Glucuronyltransferase in perfused rat liver and in microsomesNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1977