A highly sensitive probe for guanine N7 in folded structures of RNA: application to tRNAPhe and Tetrahymena group I intron
- 3 August 1993
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 32 (30) , 7610-7616
- https://doi.org/10.1021/bi00081a002
Abstract
A nickel complex has been shown to promote conformation-specific oxidation of guanosine in polynucleotide RNA. In all cases, reaction was strictly dependent on the solvent exposure and surface properties of guanine N7. Modification of native tRNA(Phe) (yeast) was detected at G18, G19, G20, and Gm34 and concurred with predictions based on its crystal structure. Additional guanine derivatives became exposed to oxidation only after the tRNA unfolded in the absence of Mg2+. Reaction of the Tetrahymena group I intron RNA (L-21 ScaI) also compared favorably to its three-dimensional model by appropriately identifying guanosine residues in hairpin loops, duplex termini, and the essential cofactor binding site. These results complemented prior data generated by hydroxyl radical, and in combination they served to distinguish the solvent accessibility of sugar backbone and base positions in guanosine residues. Most importantly, this nickel complex exhibited greater selectivity than either dimethyl sulfate or RNase T1 for characterizing tRNA(Phe) and intron RNA.Keywords
This publication has 41 references indexed in Scilit:
- An independently folding domain of RNA tertiary structure within the Tetrahymena ribozymeBiochemistry, 1993
- Macrocyclic nickel complexes in DNA recognition and oxidationPublished by Walter de Gruyter GmbH ,1993
- RNA substrate binding site in the catalytic core of the Tetrahymena ribozymeNature, 1992
- Tertiary Structure Around the Guanosine-Binding Site of the Tetrahymena RibozymeScience, 1992
- Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysisJournal of Molecular Biology, 1990
- The guanosine binding site of the Tetrahymena ribozymeNature, 1989
- Mechanism of guanosine recognition and RNA hydrolysis by ribonuclease T1Pure and Applied Chemistry, 1985
- Correlation between chemical modification and surface accessibility in yeast phenylalanine transfer RNABiopolymers, 1983
- A crystallographic study of metal-binding to yeast phenylalanine transfer RNAJournal of Molecular Biology, 1977
- Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNAScience, 1974