A general, energy-separable polynomial representation of the time-independent full Green operator with application to time-independent wavepacket forms of Schrödinger and Lippmann—Schwinger equations
- 1 July 1994
- journal article
- Published by Elsevier in Chemical Physics Letters
- Vol. 225 (1-3) , 37-45
- https://doi.org/10.1016/0009-2614(94)00590-7
Abstract
No abstract availableThis publication has 30 references indexed in Scilit:
- A new computational algorithm for Green's functions: Fourier transform of the Newton polynomial expansionComputer Physics Communications, 1993
- A time-dependent wave packet approach to atom–diatom reactive collision probabilities: Theory and application to the H+H2 (J=0) systemThe Journal of Chemical Physics, 1990
- A study of semiiterative methods for nonsymmetric systems of linear equationsNumerische Mathematik, 1985
- Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iterationNumerische Mathematik, 1978
- The Tchebychev iteration for nonsymmetric linear systemsNumerische Mathematik, 1977
- Series in faber polynomials and several generalizationsJournal of Mathematical Sciences, 1976
- Faber Polynomials and the Faber SeriesThe American Mathematical Monthly, 1971
- Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methodsNumerische Mathematik, 1961
- Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methodsNumerische Mathematik, 1961
- Über Tschebyscheffsche Polynome.Journal für die reine und angewandte Mathematik (Crelles Journal), 1920