Abstract
A model of neural network to recognize spatiotemporal patterns is presented. The network consists of two kinds of neural cells: P-cells and B-cells. A P-cell generates an impulse responding to more than one impulse and embodies two special functions: short term storage (STS) and heterosynaptic facilitation (HSF). A B-cell generates several impulses with high frequency as soon as it receives an impulse. In recognizing process, an impulse generated by a P-cell represents a recognition of stimulus pattern, and triggers the generation of impulses of a B-cell. Inhibitory impulses with high frequency generated by a B-cell reset the activities of all P-cells in the network. Two examples of spatiotemporal pattern recognition are presented. They are achieved by giving different values to the parameters of the network. In one example, the network recognizes both directional and non-directional patterns. The selectivities to directional and non-directional patterns are realized by only adjusting excitatory synaptic weights of P-cells. In the other example, the network recognizes time series of spatial patterns, where the lengths of the series are not necessarily the same and the transitional speeds of spatial patterns are not always the same. In both examples, the HSF signal controls the total activity of the network, which contributes to exact recognition and error recovery. In the latter example, it plays a role to trigger and execute the recognizing process. Finally, we discuss the correspondence between the model and physiological findings.