Adenovirus-mediated transfer of type IV collagen α5 chain cDNA into swine kidney in vivo: deposition of the protein into the glomerular basement membrane

Abstract
Gene therapy of Alport syndrome (hereditary nephritis) aims at the transfer of a corrected type IV collagen α chain gene into renal glomerular cells responsible for production of the glomerular basement membrane (GBM). A GBM network composed of type IV collagen molecules is abnormal in Alport syndrome which leads progressively to kidney failure. The most common X-linked form of the disease is caused by mutations in the gene for the α5(IV) chain, the α5 chain of type IV collagen. Full-length human α5(IV) cDNA was expressed in HT1080 cells with an adenovirus vector, and the recombinant α5(IV) chain was shown to assemble into heterotrimers consisting of α3(IV) and α4(IV) chains, utilizing a FLAG epitope in the recombinant α5(IV) chain. The results indicate that correction of the molecular defect in Alport syndrome is possible. Previously, we had developed an organ perfusion method for effective in vivo gene transfer into glomerular cells. In vivo perfusion of pig kidneys with the recombinant adenovirus resulted in expression of the α5(IV) chain in kidney glomeruli as shown by in situ hybridization and its deposition into the GBM was shown by immunohistochemistry. The results strongly suggest future possibilities for gene therapy of Alport syndrome.