Different responses in skin and muscle sympathetic nerve activity to static muscle contraction

Abstract
We microneurographically recorded the traffic of sympathetic nerves leading to foot volar skin activity (SSA) and leg skeletal muscle activity (MSA) during isometric handgrip and simultaneously determined sweat rate by the ventilated capsule method and skin blood flow by laser-Doppler flowmetry in the innervating area of SSA. SSA increased abruptly and was almost constant during handgrip, accompanied by an increase in sweat rate, whereas skin blood flow showed no significant change during the handgrip. MSA showed a time-dependent increase during the course of handgrip. During arterial occlusion of the working forearm after handgrip, SSA decayed to the precontraction control level, whereas MSA remained at a higher level than during control. During involuntary biceps muscle contraction induced by electrical stimulation, both SSA and MSA increased. The results suggest that the SSA response during voluntary handgrip, which was demonstrated to contain mainly sudomotor activity, might be influenced by central command and input from peripheral mechanoreceptors but be influenced little by input from muscle chemoreceptors.

This publication has 0 references indexed in Scilit: