Abstract
Nucleotide sequence comparisons of three house-keeping genes, adenylate kinase (adk), shikimate dehydrogenase (aroE), and glucose-6-phosphate dehydrogenase (gdh), were used to infer the phylogeny of 33 gamma-proteobacteria. Phylogenetic trees inferred from each gene, and from the concatenated sequences of all three genes, are, in general, similar to a 16S rRNA gene-inferred tree. Similar grouping of bacteria are revealed at the family, genus, species and strain levels in all five trees. The house-keeping genes, however, show a higher rate of nucleotide sequence substitutions. Consequently, they can possibly probe deeper branches of a phylogenetic tree than the 16S rRNA gene. However, because their nucleotide sequences are not as highly conserved among gamma-proteobacteria, family- or genus-specific primers would need to be designed for the amplification of any of these three house-keeping genes. Since these genes are used in multilocus sequence typing, it is expected that the number of sequences publicly available for many taxa will increase over time proving them very useful either at complementing 16S rRNA-inferred phylogenies or for specific, targeted, phylogenetic analysis.