Concurrent Processing and Complexity of Temporally Encoded Neuronal Messages in Visual Perception

Abstract
The intrinsic neuronal code that carries visual information and the perceptual mechanism for decoding that information are not known. However, multivariate statistics and information theory show that neurons in four visual areas simultaneously carry multiple, stimulus-related messages by utilizing multiplexed temporal codes. The complexity of these temporal messages increases progressively across the visual system, yet the temporal codes overlap in time. Thus, visual perception may depend on the concurrent processing of multiplexed temporal messages from all visual areas.