Gold Nanoparticles as Spectroscopic Enhancers for in Vitro Studies on Single Viruses

Abstract
Gold particles with diameters between 2.5 and 4.5 nm have been introduced in the inner cavity of an icosahedral brome mosaic virus. The optical properties of single gold-marked virions have been tested in-vitro with respect to the characteristic plasmon polariton resonance. The shift in the plasmon polariton resonance of a single Au particle encapsulated in a virus with respect to a free particle in solution indicates a close interaction between the basic residues on the inner wall of the capsid and the negative surface charge of the particle. Incorporation of a pair of Au particles, ∼4 nm diameter, is shown to be a frequent event. In this case, the dependence of the two-particle surface plasmon spectrum on the interparticle distance and the strong particle/capsid wall interaction suggest that, in the future, it will be possible to use encapsulated Au particles to track changes in the viral capsid volume in real-time and in a physiological environment.