Spectroscopic Study of Photosensitized Oxidation of Polyisoprene

Abstract
The microstructural changes which occur in cis- and trans-1,4-polyisoprenes and in squalene during photosensitized oxidation were investigated with the aid of infrared and proton and carbon-13 NMR spectroscopy. The singlet oxygenation of these isoprenic compounds resulted in allylic hydroperoxides with shifted double bonds, according to the expected “ene”-type process. In contrast to trans-1,4-polyisoprene and squalene, which displayed the three possible double bond shifts, cis-1,4-polyisoprene showed essentially two of the shifts (to di- and trisubstituted double bonds) and very little of the third (to exomethylene groups). A suitable measure of the extent of hydroperoxidation was afforded by the absorbance ratio, A3400/A1440≡A′. Similar correlations of A′ with oxygen uptake were obtained for the three isoprenic compounds, using chlorophyll or methylene blue as sensitizer. The use of rose bengal gave erratic results indicative of some autoxidation accompanying the hydroperoxide formation. The singlet oxygenation followed zero-order kinetics, the relative rates for cis- and trans-1,4-polyisoprenes being approximately 1.0:1.5.

This publication has 0 references indexed in Scilit: