Abstract
The importance of spore infection in the spread of Inonotus tomentosus was assessed using vegetative compatibility and protein electrophoresis. Isolates were collected from diseased spruce (Picea glauca × engelmannii) trees from five sites. Each site had several small (two or three trees) discrete disease centres, or larger patchy centres, or both. Within each site, the vegetative compatibility group and protein profiles of isolates were examined in all combinations of paired isolates. Vegetatively compatible isolates had identical protein profiles in 74% of the comparisons. Vegetatively incompatible isolates had different protein profiles 97% of the time. Usually isolates differed by only one or two protein bands. Isolates from a discrete centre were usually vegetatively compatible with identical protein patterns. Larger patchy centres consisted of multiple vegetatively compatible groups. The number of unique vegetatively compatible groups found suggests that spores are an important course of infection. Key words: vegetative compatibility, disease centre, protein electrophoresis.

This publication has 0 references indexed in Scilit: