Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy
- 7 May 2008
- journal article
- research article
- Published by Oxford University Press (OUP) in Human Molecular Genetics
- Vol. 17 (16) , 2507-2517
- https://doi.org/10.1093/hmg/ddn151
Abstract
Duchenne muscular dystrophy (DMD) is characterized in skeletal muscle by cycles of myofiber necrosis and regeneration leading to loss of muscle fibers and replacement with fibrotic connective and adipose tissue. The ongoing activation and recruitment of muscle satellite cells for myofiber regeneration results in loss of regenerative capacity in part due to proliferative senescence. We explored a method whereby new myoblasts could be generated in dystrophic muscles by transplantation of primary fibroblasts engineered to express a micro-dystrophin/enhanced green fluorescent protein (muDys/eGFP) fusion gene together with a tamoxifen-inducible form of the myogenic regulator MyoD [MyoD-ER(T)]. Fibroblasts isolated from mdx(4cv) mice, a mouse model for DMD, were efficiently transduced with lentiviral vectors expressing muDys/eGFP and MyoD-ER(T) and underwent myogenic conversion when exposed to tamoxifen. These cells could also be induced to differentiate into muDys/eGFP-expressing myocytes and myotubes. Transplantation of transduced mdx(4cv) fibroblasts into mdx(4cv) muscles enabled tamoxifen-dependent regeneration of myofibers that express muDys. This lineage control method therefore allows replenishment of myogenic stem cells using autologous fibroblasts carrying an exogenous dystrophin gene. This strategy carries several potential advantages over conventional myoblast transplantation methods including: (i) the relative simplicity of culturing fibroblasts compared with myoblasts, (ii) a readily available cell source and ease of expansion and (iii) the ability to induce MyoD gene expression in vivo via administration of a medication. Our study provides a proof of concept for a novel gene/stem cell therapy technique and opens another potential therapeutic approach for degenerative muscle disorders.Keywords
This publication has 54 references indexed in Scilit:
- Systemic Microdystrophin Gene Delivery Improves Skeletal Muscle Structure and Function in Old Dystrophic mdx MiceMolecular Therapy, 2008
- Induced Pluripotent Stem Cell Lines Derived from Human Somatic CellsScience, 2007
- Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined FactorsCell, 2007
- Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined FactorsCell, 2006
- A highly functional mini-dystrophin / GFP fusion gene for cell and gene therapy studies of Duchenne muscular dystrophyHuman Molecular Genetics, 2006
- Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafishJournal of Human Genetics, 2006
- Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle DegenerationScience, 2005
- Transplantation of Dermal Fibroblasts Expressing MyoD1 in Mouse MusclesBiochemical and Biophysical Research Communications, 1998
- Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapySomatic Cell and Molecular Genetics, 1990
- EGF responsiveness and receptor regulation in normal and differentiation-defective mouse myoblastsDevelopmental Biology, 1984