New Diarylmethylpiperazines as Potent and Selective Nonpeptidic δ Opioid Receptor Agonists with Increased In Vitro Metabolic Stability

Abstract
Nonpeptide δ opioid agonists are analgesics with a potentially improved side-effect and abuse liability profile, compared to classical opioids. Andrews analysis of the NIH nonpeptide lead SNC-80 suggested the removal of substituents not predicted to contribute to binding. This approach led to a simplified lead, N,N-diethyl-4-[phenyl(1-piperazinyl)methyl]benzamide (1), which retained potent binding affinity and selectivity to the human δ receptor (IC50 = 11 nM, μ/δ = 740, κ/δ > 900) and potency as a full agonist (EC50 = 36 nM) but had a markedly reduced molecular weight, only one chiral center, and increased in vitro metabolic stability. From this lead, the key pharmacophore groups for δ receptor affinity and activation were more clearly defined by SAR and mutagenesis studies. Further structural modifications on the basis of 1 confirmed the importance of the N,N-diethylbenzamide group and the piperazine lower basic nitrogen for δ binding, in agreement with mutagenesis data. A number of piperazine N-alkyl substituents were tolerated. In contrast, modifications of the phenyl group led to the discovery of a series of diarylmethylpiperazines exemplified by N,N-diethyl-4-[1-piperazinyl(8-quinolinyl)methyl]benzamide (56) which had an improved in vitro binding profile (IC50 = 0.5 nM, μ/δ = 1239, EC50 = 3.6 nM) and increased in vitro metabolic stability compared to SNC-80.

This publication has 12 references indexed in Scilit: