Energy Theorem for 2+1 dimensional gravity
Preprint
- 8 June 1994
Abstract
We prove a positive energy theorem in 2+1 dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value $1/4G$ corresponding to a deficit angle of $2\pi$. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw and 't Hooft is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth and Olum for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti de Sitter 2+1 dimensional gravity.
Keywords
All Related Versions
- Version 1, 1994-06-08, ArXiv
- Published version: Annals of Physics, 240 (1), 203.
This publication has 0 references indexed in Scilit: