An efficient VLSI architecture for 2-D wavelet image coding with novel image scan

Abstract
A folded very large scale integration (VLSI) architecture is presented for the implementation of the two-dimensional discrete wavelet transform, without constraints on the choice of the wavelet-filter bank. The proposed architecture is dedicated to flexible block-oriented image processing, such as adaptive vector quantization used in wavelet image coding. We show that reading the image along a two-dimensional (2-D) pseudo-fractal scan creates a very modular and regular data flow and, therefore, considerably reduces the folding complexity and memory requirements for VLSI implementation. This leads to significant area savings for on-chip storage (up to a factor of two) and reduces the power consumption. Furthermore, data scheduling and memory management remain very simple. The end result is an efficient VLSI implementation with a reduced area cost compared to the conventional approaches, reading the input data line by line.

This publication has 34 references indexed in Scilit: