Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts
- 1 March 1979
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 137 (3) , 1346-1353
- https://doi.org/10.1128/jb.137.3.1346-1353.1979
Abstract
Bacterial protoplast fusion, induced by polyethylene glycol, has been made more regular and convenient by further specification and improvement of various steps in the previously used procedure. These have made it possible to obtain regularly 100% regeneration of Bacillus subtilis cells from protoplasts before treatment with polyethylene glycol and yields of 10 to 75% from polyethylene glycol-treated protoplasts. Genetic recombination frequencies do not increase correspondingly. Also, when regeneration is reduced by various experimental conditions, recombination does not decrease in proportion. It is concluded that regeneration of recombinant-forming cells is independently determined and not closely related to the average regeneration for the population. Kinetic studies with varying individual parental or total protoplast concentrations strongly indicate that protoplast collision and contact is not the limiting factor determining the number of genetic recombinants obtained. Recombination approximates a linear, rather than quadratic, function of the total or of the majority protoplast population present, from which it is concluded that fusion events are always adequate to produce substantially more potential recombinants than are registered. The strong effect of the majority/minority ratio upon the number of minority cells that become recombinant is independent of which parent is in excess. This shows in a direct and physiological way that both parents are equivalent partners in their genetic contributions.This publication has 19 references indexed in Scilit:
- Chapter 13 Fusion of Bacterial ProtoplastsPublished by Elsevier ,1978
- Further genetic studies on the fusion of bacterial protoplastsFEMS Microbiology Letters, 1977
- Fusion of bacterial protoplasts.Proceedings of the National Academy of Sciences, 1976
- Fusion of protoplasts of Bacillus megaterium.Proceedings of the National Academy of Sciences, 1976
- Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentrationSomatic Cell and Molecular Genetics, 1976
- Conditions for induced fusion of fungal protoplasts in polyethylene glycol solutionsArchiv für Mikrobiologie, 1975
- Isolation and Characterization of Cell Wall-Defective Variants of Bacillus subtilis and Bacillus licheniformisJournal of Bacteriology, 1973
- Effects of lysozyme on competence for Bacillus subtilis transfectionBiochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1970
- Catabolic repression of bacterial sporulation.Proceedings of the National Academy of Sciences, 1965
- PRODUCTION OF PROTOPLASTS OF ESCHERICHIA COLI BY LYSOZYME TREATMENTProceedings of the National Academy of Sciences, 1956