Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits
- 7 October 2005
- journal article
- research article
- Published by Wiley in Journal of Neurobiology
- Vol. 66 (1) , 82-94
- https://doi.org/10.1002/neu.20205
Abstract
The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre‐ or postsynaptic compartments. Here, we demonstrate that TIMP‐2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP‐2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP‐2−/− mice fall off the RotaRod significantly faster than wild‐type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP‐2−/− mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP‐2−/− mice. Juvenile TIMP‐2−/− mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP‐2−/− endplates are enlarged and more complex. This suggests a role for TIMP‐2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP‐2−/− motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP‐2−/− motor phenotype. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006Keywords
This publication has 56 references indexed in Scilit:
- β1 Integrins in Muscle, But Not in Motor Neurons, Are Required for Skeletal Muscle InnervationJournal of Neuroscience, 2004
- An Alternative Processing of Integrin αv Subunit in Tumor Cells by Membrane Type-1 Matrix MetalloproteinaseJournal of Biological Chemistry, 2002
- Induction, assembly, maturation and maintenance of a postsynaptic apparatusNature Reviews Neuroscience, 2001
- Chronic Vasodilation Induces Matrix Metalloproteinase 9 (MMP-9) Expression during Microvascular Remodeling in Rat Skeletal MuscleMicrocirculation, 2001
- Inactivating Mutation of the Mouse Tissue Inhibitor of Metalloproteinases-2(Timp-2) Gene Alters ProMMP-2 ActivationJournal of Biological Chemistry, 2000
- Intracranial Injury Acutely Induces the Expression of the Secreted Isoform of the CNS-Specific Hyaluronan-Binding Protein BEHAB/BrevicanExperimental Neurology, 1999
- Hyperinnervation of Neuromuscular Junctions Caused by GDNF Overexpression in MuscleScience, 1998
- Proteolytic activity, synapse elimination, and the Hebb synapseJournal of Neurobiology, 1994
- Increases in pericellular proteolysis at developing neuromuscular junctions in cultureDevelopmental Biology, 1992
- Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscleDevelopmental Brain Research, 1986