Excitonic order at strong-coupling: pseudo-spins, doping, and ferromagnetism
Preprint
- 17 February 2000
Abstract
A tight binding model is introduced to describe the strong interaction limit of excitonic ordering. At stoichiometry, the model reduces in the strong coupling limit to a pseudo-spin model with approximate U(4) symmetry. Excitonic order appears in the pseudo-spin model as in-plane pseudo-magnetism. The U(4) symmetry unifies all possible singlet and triplet order parameters describing such states. Super-exchange, Hunds-rule coupling, and other perturbations act as anisotropies splitting the U(4) manifold, ultimately stabilizing a paramagnetic triplet state. The tendency to ferromagnetism with doping (observed experimentally in the hexaborides) is explained as a spin-flop transition to a different orientation of the U(4) order parameter. The physical mechanism favoring such a reorientation is the enhanced coherence (and hence lower kinetic energy) of the doped electrons in a ferromagnetic background relative to the paramagnet. A discussion of the physical meaning of various excitonic states and their experimental consequences is also provided.Keywords
All Related Versions
- Version 1, 2000-02-17, ArXiv
- Published version: Physical Review B, 62 (4), 2346.
This publication has 0 references indexed in Scilit: