Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides

Top Cited Papers
Open Access
Abstract
A variable (0.2 to 5 MHz) repetition rate femtosecond laser was applied to delineate the role of thermal diffusion and heat accumulation effects in forming low-loss optical waveguides in borosilicate glass across a broad range of laser exposure conditions. For the first time, a smooth transition from diffusion-only transport at 200-kHz repetition rate to strong heat accumulation effects at 0.5 to 2 MHz was observed and shown to drive significant variations in waveguide morphology, with rapidly increasing waveguide diameter that accurately followed a simple thermal diffusion model over all exposure variables tested. Amongst these strong thermal trends, a common exposure window of 200-mW average power and ~15-mm/s scan speed was discovered across the range of 200-kHz to 2-MHz repetition rates for minimizing insertion loss despite a 10-fold drop in laser pulse energy. Waveguide morphology and thermal modeling indicate that strong thermal diffusion effects at 200 kHz give way to a weak heat accumulation effect at ~1-µJ pulse energy for generating low loss waveguides, while stronger heat accumulation effects above 1-MHz repetition rate offered overall superior guiding. A comprehensive characterization of waveguide properties is presented for laser writing in the thermal diffusion and heat accumulation regimes. The waveguides are shown to be thermally stable up to 800°C and can be written in a convenient 520-μm depth range with low spherical aberration.