Chemicals in Diesel Exhaust Particles Generate Reactive Oxygen Radicals and Induce Apoptosis in Macrophages

Abstract
There is increasing evidence that particulate air pollutants, such as diesel exhaust particles (DEP), potentiate chronic inflammatory processes as well as acute symptomatic responses in the respiratory tract. The mechanisms of action as well as the cellular targets for DEP remain to be elucidated. We show in this paper that the phagocytosis of DEP by primary alveolar macrophages or macrophage cell lines, RAW 264.7 and THP-1, leads to the induction of apoptosis through generation of reactive oxygen radicals (ROR). This oxidative stress initiates two caspase cascades and a series of cellular events, including loss of surface membrane asymmetry and DNA damage. The apoptotic effect on macrophages is cell specific, because DEP did not induce similar effects in nonphagocytic cells. DEP that had their organic constituents extracted were no longer able to induce apoptosis or generate ROR. The organic extracts were, however, able to induce apoptosis. DEP chemicals also induced the activation of stress-activated protein kinases, which play a role in cellular apoptotic pathways. The injurious effects of native particles or DEP extracts on macrophages could be reversed by the antioxidant, N-acetyl-cysteine. Taken together, these data suggest that organic compounds contained in DEP may exert acute toxic effects via the generation of ROR in macrophages.