Foldamer dynamics expressed via Markov state models. I. Explicit solvent molecular-dynamics simulations in acetonitrile, chloroform, methanol, and water

Abstract
In this article, we analyze the folding dynamics of an all-atom model of a polyphenylacetylene (pPA) 12-mer in explicit solvent for four common organic and aqueous solvents: acetonitrile, chloroform, methanol, and water. The solvent quality has a dramatic effect on the time scales in which pPA 12-mers fold. Acetonitrile was found to manifest ideal folding conditions as suggested by optimal folding times on the order of 100200ns , depending on temperature. In contrast, chloroform and water were observed to hinder the folding of the pPA 12-mer due to extreme solvation conditions relative to acetonitrile; chloroform denatures the oligomer, whereas water promotes aggregation and traps. The pPA 12-mer in a pure methanol solution folded in 400ns at 300K , compared relative to the experimental 12-mer folding time of 160ns measured in a 1:1 v/v THF/methanol solution. Requisite in drawing the aforementioned conclusions, analysis techniques based on Markov state models are applied to multiple short independent trajectories to extrapolate the long-time scale dynamics of the 12-mer in each respective solvent. We review the theory of Markov chains and derive a method to impose detailed balance on a transition-probability matrix computed from simulation data.