Bimodal Behavior in the Zonal Mean Flow of a Baroclinic β-Channel Model

Abstract
The dynamical origin of midlatitude zonal-jet variability is examined in a thermally forced, quasigeostrophic, two-layer channel model on a β plane. The model’s behavior is studied as a function of the bottom-friction strength. Two distinct zonal-flow states exist at realistic, low, and intermediate values of the bottom drag; these two states are maintained by the eddies and differ mainly in terms of the meridional position of their climatological jets. The system’s low-frequency evolution is characterized by irregular transitions between the two states. For a given branch of model solutions, the leading stationary and propagating empirical orthogonal functions are related to eigenmodes of the model’s dynamical operator, linearized about the climatological state on this branch. Nonlinear interactions between these modes are instrumental in determining their relative energy level. In particular, the stationary modes’ self-interaction is shown to vanish. Thus, these modes do not exchange energy wit... Abstract The dynamical origin of midlatitude zonal-jet variability is examined in a thermally forced, quasigeostrophic, two-layer channel model on a β plane. The model’s behavior is studied as a function of the bottom-friction strength. Two distinct zonal-flow states exist at realistic, low, and intermediate values of the bottom drag; these two states are maintained by the eddies and differ mainly in terms of the meridional position of their climatological jets. The system’s low-frequency evolution is characterized by irregular transitions between the two states. For a given branch of model solutions, the leading stationary and propagating empirical orthogonal functions are related to eigenmodes of the model’s dynamical operator, linearized about the climatological state on this branch. Nonlinear interactions between these modes are instrumental in determining their relative energy level. In particular, the stationary modes’ self-interaction is shown to vanish. Thus, these modes do not exchange energy wit...