Dissipation in Compressible Magnetohydrodynamic Turbulence

Abstract
We report results of a three-dimensional, high resolution (up to 5123) numerical investigation of supersonic compressible magnetohydrodynamic turbulence. We consider both forced and decaying turbulence. The model parameters are appropriate to conditions found in Galactic molecular clouds. We find that the dissipation time of turbulence is of the order of the flow crossing time or smaller, even in the presence of strong magnetic fields. About half of the dissipation occurs in shocks. Weak magnetic fields are amplified and tangled by the turbulence, while strong fields remain well ordered.
All Related Versions

This publication has 17 references indexed in Scilit: