A Normal-Mode Approach to Jovian Atmospheric Dynamics
- 1 August 1989
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 46 (15) , 2448-2462
- https://doi.org/10.1175/1520-0469(1989)046<2448:anmatj>2.0.co;2
Abstract
We propose a nonlinear, quasi-geostrophic, baroclinic model of Jovian atmospheric dynamics, in which vertical variations of velocity are represented by a truncated sum over a complete set of orthogonal functions obtained by a separation of variables of the linearized quasi-geostrophic potential vorticity equation. A set of equations for the time variation of the mode amplitudes in the nonlinear case is then derived. We show that for a planet with a neutrally stable, fluid interior instead of a solid lower boundary, the baroclinic mode represents motions in the interior, and is not affected by the baroclinic modes. One consequence of this is that a normal-mode model with one baroclinic mode is dynamically equivalent to a one layer model with solid lower topography. We also show that for motions in Jupiter's cloudy lower troposphere, the stratosphere behaves nearly as a rigid lid, so that the normal-mode model is applicable to Jupiter. We test the accuracy of the normal-mode model for Jupiter using... Abstract We propose a nonlinear, quasi-geostrophic, baroclinic model of Jovian atmospheric dynamics, in which vertical variations of velocity are represented by a truncated sum over a complete set of orthogonal functions obtained by a separation of variables of the linearized quasi-geostrophic potential vorticity equation. A set of equations for the time variation of the mode amplitudes in the nonlinear case is then derived. We show that for a planet with a neutrally stable, fluid interior instead of a solid lower boundary, the baroclinic mode represents motions in the interior, and is not affected by the baroclinic modes. One consequence of this is that a normal-mode model with one baroclinic mode is dynamically equivalent to a one layer model with solid lower topography. We also show that for motions in Jupiter's cloudy lower troposphere, the stratosphere behaves nearly as a rigid lid, so that the normal-mode model is applicable to Jupiter. We test the accuracy of the normal-mode model for Jupiter using...Keywords
This publication has 0 references indexed in Scilit: