Abstract
This paper treats essentially the first derivative of an estimator viewed as functional and the ways in which it can be used to study local robustness properties. A theory of robust estimation “near” strict parametric models is briefly sketched and applied to some classical situations. Relations between von Mises functionals, the jackknife and U-statistics are indicated. A number of classical and new estimators are discussed, including trimmed and Winsorized means, Huber-estimators, and more generally maximum likelihood and M-estimators. Finally, a table with some numerical robustness properties is given.