Abstract
This essay reviews research on interhemispheric transfer time derived from simple unimanual reaction time to hemitachistoscopically presented visual stimuli. Part 1 reviews major theoretical themes including (a) the significance of the eccentricity effect on interhemispheric transfer time in the context of proposed underlying neurohistological constraints; (b) the significance of gender differences in interhemispheric transfer time and findings in dyslexics and left-handers in the context of a fetal brain testosterone model; and (c) the significance of complexity effects on interhemispheric transfer time in a context of “dynamic” vs. “hard-wired” concepts of the underlying interhemispheric communication systems. Part 2 consists of a meta-analysis of 49 published behavioral experiments, in view of drawing a portrait of the best set of experimental conditions apt to produce salient, reliable, and statistically significant measures of interhemispheric transfer time, namely (a) index rather than thumb response, (b) low rather than high target luminance, (c) short rather than prolonged target display, and (d) very eccentric rather than near-foveal stimulus location. Part 3 proposes a theoretical model of interhemispheric transfer time, postulating the measurable existence of fast and slow interhemispheric channels. The proposed mechanism's evolutionary adaptive value, the neurophysiological evidence in its support, and favorable functional evidence from studies of callosotomized patients are then presented followed by proposals for critical experimental tests of the model.

This publication has 122 references indexed in Scilit: