Site-directed mutagenesis of the psbC gene of photosystem II: isolation and functional characterization of CP43-less photosystem II core complexes

Abstract
Two mutants of Synechocystis PCC 6803 lacking the psbC gene product CP43 were constructed by site-directed mutagenesis. Analysis of cells and thylakoid membranes of these mutants indicates that PS II reaction centers accumulate to a concentration of about 10% of that of WT cells. PS II core complexes isolated from mutants lacking the CP43 subunit show light-driven electron transfer from the secondary electron donor Z to the primary quinone electron acceptor QA with a quantum yield similar to that of wild type, indicating that CP43 is not required for binding or function of QA. The use of mutants for the removal of CP43 thus avoids the loss of QA function associated with biochemical extraction of CP43 from intact core complexes. Both absorbance and fluorescence emission maxima of the mutant complexes show a blue shift in comparison to the WT PS II core complex, indicating that the absorbance spectrum of CP43 is red-shifted relative to that of the remainder of the core complex. The antenna size of these CP43-less complexes is about 70% of that of WT, indicating that approximately 15 chlorophyll molecules are bound by CP43. The molecular mass of the PS II complex, including the detergent shell, shifts from 310 +/- 15 kDa in WT to 285 +/- 15 kDa in the CP43-less mutants.

This publication has 0 references indexed in Scilit: