Random sign embeddings from $l^n_r,\;2 < r < \infty$

Abstract
Estimates for any ideal norm of a "random sign embedding" from into <!-- MATH $l_r^m,\;2 < r < \infty$ --> <img width="134" height="39" align="MIDDLE" border="0" src="images/img9.gif" alt="$ l_r^m,\;2 < r < \infty $">, are given in terms of the corresponding ideal norm of the identity of <!-- MATH $l_r^k,\;k = k(n,m,r)$ --> .

This publication has 6 references indexed in Scilit: