A three-state biological point process model and its parameter estimation
- 1 January 1998
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Signal Processing
- Vol. 46 (10) , 2698-2707
- https://doi.org/10.1109/78.720372
Abstract
The Poisson random process is widely used to describe experiments involving discrete arrival data. However, for creating models of egg-laying behavior in neural biology studies on the nematode C. elegans, we have found that homogeneous Poisson processes are inadequate to capture the measured temporal patterns. We present here a novel three-state model that effectively represents the measured temporal patterns and that correlates well with the cellular and molecular mechanisms that are known to be responsible for the measured behavior. Although the model involves a combination of two Poisson processes, it is surprisingly tractable. We derive closed-form expressions for the probabilistic and statistical properties of the model and present a maximum likelihood method to estimate its parameters. Both simulated and experimental results are illustrated. The experiments with measured data show that the egg-laying patterns fit the three-state model very well. The model also may be applicable in quantifying the link between other neural processes and behaviors or in other situations where discrete events occur in clustersKeywords
This publication has 5 references indexed in Scilit:
- A nonstationary Poisson point process describes the sequence of action potentials over long time scales in lateral-superior-olive auditory neuronsBiological Cybernetics, 1994
- Random Point Processes in Time and SpacePublished by Springer Nature ,1991
- The maximum likelihood approach to the identification of neuronal firing systemsAnnals of Biomedical Engineering, 1987
- The transmission of signals by auditory-nerve fiber discharge patternsThe Journal of the Acoustical Society of America, 1983
- Time Series: Data Analysis and Theory.Published by JSTOR ,1981