Abstract
A wide variety of speech recognition distortion measures have been proposed and tested, including some especially effective ones. It is shown that there is a general framework, based on the concepts of information theory, linking most of these measures. The distortion measure between any two speech spectra can be defined in terms of the distortions between the associated probability distributions. This general framework defines three broad families of distortion measures for speech recognition and provides a consistent way of combining the energy and the spectral information of a phonetic event. In addition, the cepstral-domain representation for several distortion measures is derived, allowing comparison of these measures in a domain that also yields convenient equations for their practical implementation

This publication has 14 references indexed in Scilit: