Sequence analysis of bacterial redox enzyme maturation proteins (REMPs)

Abstract
The twin-arginine protein transport (Tat) system is a remarkable molecular machine dedicated to the translocation of fully folded proteins across energy-transducing membranes. Complex cofactor-containing Tat substrates acquire their cofactors prior to export, and substrate proteins actually require to be folded before transport can proceed. Thus, it is very likely that mechanisms exist to prevent wasteful export of immature Tat substrates or to curb competition between immature and mature substrates for the transporter. Here we assess the primary sequence relationships between the accessory proteins implicated in this process during assembly of key respiratory enzymes in the model prokaryote Escherichia coli. For each respiratory enzyme studied, a redox enzyme maturation protein (REMP) was assigned. The main finding from this review was the hitherto unexpected link between the Tat-linked REMP DmsD and the nitrate reductase biosynthetic protein NarJ. The evolutionary link between Tat transport and cofactor insertion processes is discussed.Key words: Tat translocase, twin-arginine leader, hydrogenase, nitrate reductase, TMAO reductase, DMSO reductase, formate dehydrogenase, Tor, Dms, Hya, Hyb, Fdh, Nap.

This publication has 82 references indexed in Scilit: